
k;l”l’ ‘1’RANSAC’1’1ONS ,VO1,. XX, NO. Y, MON’1’ki 1999 1
.,6

Soft-input soft-output modules for the

construction and distributed iterative

decoding of code networks

Sergio Elenedetto, I)ariush Divsalar, Guido Montorsi, Fabrizio Pollara

I)ipartimento di Elettronica, Politecnico di Torino

This work has been supported by NATO under Research Grant CRG 951208 and by Qualcomm, Inc.
The research described in this paper was partially carried out at the Jet Propulsion Laboratory, California

Institute of Technology, under contract with National Aeronautics and Space Administration (NASA).

December 17, 1997 DRAFT

2 M’1”1’‘lRANSAC’1’lC)NS ,VOL. XX, NO. Y, MON’111 1999

Abstract

Soft-input soft-output building blocks (modules) arc presented to construct and iteratively

decode in a distributed fashion code networks, a new concept that includes, and generalizes,

various forms of concatenated coding schemes. Among the modules, a central role is played by

the S1S0 module (and the underlying algorithm): it consists of a four-port device performing a

processing of the sequences of two input probability distributions by constraining them to the

code trellis structure. The S1S0 and other soft-input soft-output modules are employed to con-

struct and decode a variety of code networks, including “turbo codes” and serially concatenated

codes with interleavers.

Keywords

Iterative decoding, turbo codes, serial concatenated codes, soft decoding algorithms.

I. INTRODUCTION

This paper concerns the construction and the distributed, iterative decoding of a conglomerate

of codes that we call code networks, the name stemming from the complexity and richness of the

possible structures of the coding schemes so obtained that make them look like communications

networks. ‘J’he connection of the various encoders is made through interleavers, and can assume

various topologies like tree, star, ring etc. q’he individual encoders that form the network can

work on any finite input and output alphabets, so that we can include in it binary codes as well

as trellis-coded modulation schemes.

Particular cases of these code networks are the recently introduced, highly performing turbo

codes [1] and serially concatenated codes with interleaves [2].

The key step in this new proposal is the definition of a number of building blocks that are

employed in the code network construction; each encoder building block has a well-defined soft-

input soft-output counterpart, which is used at the receiving side to realize a distributed, iterative

decoding algorithm.

The concept of distributed decoding is here emphasized, in that we do not consider the code

network as an overall, unique code, and thus do not deal with its optimum maximum-likelihood

decoding and consequent suboptimality of the proposed decoder. Rather, we consider the decoder

structure as a multiplicity of connected modules, which exchange soft information with the

objective of improving their knowledge of the a-posteriori probabilities of the quantities that

flow through them. From this perspective, the decoder structure comes as a direct, natural

implication of the encoder network. The distributed decoding drastically reduces the decoder

complexity, yielding very powerful codes endowed with a relatively simple decoding structure.

The iterative, distributed decoding algorithms work very well in a~l practical situations; how-

ever, two import ant theoretical questions are left unsolved, concerning the “if’ and “where” of

DRAFT December 17, 1997

-i.
BliNh;Dli’1’’l’O, DIVSA1, AR, MON’1’ORSI, POLLARA: SOl~’’l-lNPU’J’ SC)F1’-C)U’1’PU’J’... 3

)
the convergence of the distributed algorithms.

Among the decoder modules, a key role is played by a block we call S1S0 (Soft-Input Soft-

Output), which implements a soft-output algorithm performing an update of the a-posteriori

probabilities of both information and coded symbols based on the code constraint. A significant

part of the paper is devoted to it.

Soft-output algorithms fall within the broad framework of digital transmission systems where

the received signal is a sequence of waveforms whose correlation extends well beyond 1“, the

signaling period. There can be many reasons for this correlation, such as coding, intersymbol

interference, correlated fading. It is well known [3] that the optimum receiver in such situa-

tion cannot perform its decisions on a symbol-by-symbol basis, so that deciding on a particu-

lar information symbol Uk involves processing a portion of the received signal 7h-second long,

with Yh > T. The decision rule can bc either optimum with respect to a sequence of symbols

U; fi (Uk>uk+], . . ., Uk+n_l), or with respect to the individual symbols u~.

The most widely applied algorithm that realizes the optimum maximum-likelihood sequence

detection is the Vitcrbi algorithm, Optimum symbol decision algorithms must base t heir decisions

on the maximization of the a posteriori probability (APP), They have been known since the early

seventies [4], [5], [6], [7], [8]. The algorithms in [5], [6], [7], [8] present a memory requirement

and computational complexity that grow linearly with the decoding delay, and require that the

whole sequence had been received before starting the decoding operations. The algorithm in [4]

can work with a fixed delay, thus not requiring the reception of the entire sequence. However, its

memory and computational complexity grows exponentially with the decoding delay. Recently,

an APP algorithm conjugating the nice aspects of previous algorithms, i.e. a fixed delay and

linear complexity growth with decoding delay has been proposed in [9]. Various modification of

the algorithm in [6] have also been proposed and verified by simulation [1O], [11], [12], [13], [14],

[15].

Symbol-by-symbol MAP decoding has been much less popular than the Viterbi algorithm and

almost never applied in practical systems until recently. The reason is that, when used for

decoding a single code or to cope with intersymbol interference, the performance improvement

of symbol-by-symbol MAP decoding over the Viterbi algorithm is insignificant, and cert airily

insufficient to justify the increase in complexity.

The story is drastically different when we consider a system using more than a single source

of memory, like two or more concatenated codes, or the cascade of a code with a channel with

memory. Concatenated coding schemes (a class in which we include product codes, multilevel

codes, generalized concatenated codes, serial and parallel concatenated codes) have been first

proposed by Forney [16] as a means to achieve large coding gains by combining two or more

relatively simple constituent codes. The resulting concatenated coding scheme is a powerful code

December 17, 1997 DRAFT

+.,
4 E’1”1’ ‘lRANSAC’1’IONS ,VOIA XX, NO. Y, MON’1’H 1999

endowed with a structure that permits an easy decoding, like stage decoding [17] or iterated stage

decoding [1].

In the above cases, the burden of decoding at the receiver side is split into two or more decoders.

To work properly, the decoding algorithms cannot limit themselves to pass the symbols decoded

by the inner decoder to the outer decoder. ‘l’hey need to exchange some kind of soft information.

Actually, as proved by Forney [16], the optimum output of the inner decoder should be in the

form of the sequence of the probability distributions over the inner code alphabet conditioned

on the received signal and on the code, the a posterior probability distribution.

The Viterbi algorithm cannot do the job, and different solutions are needed. Some of them

are based on modifications of the Viterbi algorithm so as to obtain at the decoder output, in

addition to the “hard’’- decoded symbols, some reliability information. This has led to the

concept of “augmented-output”, or list-decoding Viterbi algorithm [18], and to the soft-output

Viterbi algorithm (SOVA) [19], [20]. These solutions are clearly suboptimal, as they are unable

to supply the required A PP ‘s. A different approach consist in revisiting the original symbol APP

algorithms [4], [6], with the aim of simplifying them to a form suitable for implementation [9],

[10], [11], [12], [13], [14], [15]. SOVA has a significantly lower complexity than APP algorithms,

paid in poorer performance: the degradation is small for binary symbols, but becomes significant

in the nonbinary case [21], [22].

Recently, the parallel concatenation of two convolutional codes fed by information sequences

obtained through the interposition of a long interleaver (“turbo codes”, see [1]) has been shown

to yield performance close to the Shannon capacity limit at a non zero value of the bit error

probability, well above the channel cutoff rate. An alternative based on the serial concatenation

of interleaved codes has also been analyzed, and proved to yield even superior performance [2].

The key to the unprecedented performance is the decoding algorithm, which iterates several times

the cascade of the soft-input soft-output decoders of the two constituent codes, Although some

interpretations of the iterative algorithms have been proposed [23], [24], a precise understanding

of it, in terms of performance proximity and convergence to the MI, or symbol-by-symbol MAP

decoding of the whole concatenated code, is not known yet.

The aim of this paper is two-fold. In the first part. we present a versatile soft-input soft-output

(S1S0) building block for several applications, like symbol-by-symbol MAP decoding of a single

code, and, more import ant, iterative decoding of multiple parallel and serial concatenated codes

with interleaves. It is based on the HCJR algorithm [6], but, unlike all the previously published

modifications of the original IICJR algorithm the S1S0 algorithm is very general, in that it:

● allows continuous decoding of the required sequence, when used to decode the concatenation

] It is usually referenced as the “ Bahl algorithm”, from the name of the first author. We prefer to credit all the

authors.

DRAFT December 17, 1997

BEN EDI3’11O, DIVSALAR, MON’1ORS1} lWLLARA: SOF1-lNPU’1’ SOF’1’-OU’1’}’U’J’...

●

●

●

4

Input Trellis output
b *

u encoder c

Fig. 1. The trellis encoder

of convolutional codes, without requiring the termination of the trellises of constituent codes;

works with multilevel (not only binary) symbols;

can be used with block and convolutional codes, both systematic and not systematic;

can cope with codes having rates greater than one, like those encountered in some concate-

nated schemes;

can accommodate parallel edges, i.e. trellises with more branches joining each pair of states,

a common case for trellis coded modulation.

In the second part of the paper, we broaden the picture introducing the aforementioned building

blocks for constructing and iteratively decoding encoder networks.

Each encoder building block will be shown to admit a soft-input soft-output counterpart, so

that each encoder network implies by specular symmetry its iterative decoder, and the whole

procedure yields a sort of “visual” justification of the decoding strategy.

Throughout the paper, several examples will be presented that refer to hnportant practical

cases; they will show that the tools presented here offer to the telecommunication engineer a

great variety of design solutions with different performance/complexity trade-offs.

II. NOTATIONS AND DEFINITIONS

A. The encoder

The decoding algorithm underlying the behavior of S1S0 works for encoders represented in

their trellis form. It can be a time-invariant or time-varying trellis, and thus the algorithm can

be used for both block and convolutional codes. In the following, for simplicity of the exposition,

we will refer to the case of time-invariant convolutional codes.

In Fig. 1 we show a trellis encoder, characterized by the following quantities :

Z]n the fOl]Owing, ~~pit~l letters U, C, S, E will denote random variables, and lower case letters u, c,s! ~ their

realizations. The reman letter P[A] will denote the probability of the event A, whereas the letter P(a) (italic)

will denote a function of a. The subscript k will denote a discrete time, defined on the time index set K. Other

subscripts, like i, will refer to elements of a finite set. Also, “ ()” will denote a time sequence, whereas “ {}” will

denote a finite set of elements.

December 17, 1997 DRAFT

6
.

● l-J = (Uk)kCK is the sequences of input

k infinite) and drawn from the alphabet:

E’1”1’ ‘1’RANSAC’1’1ONS ,VC)l.. XX, NO. Y, MON’1’11 1999

symbols, defined over a time index set K (finite or

i!/= {UI,. ... UjVl).

To the sequence of input symbols, we associate the sequence of a priori probability distribu-

tions:

P(u) = (Pk(u))k~K

where

}’k(u) e P[uk = u]

● C = (Ck)kE}{ is the sequences of output, or code, symbols, defhled over the same time index

set K, and drawn from the alphabet:

C={cl,. ... cNo} o

To the sequence of output symbols, we associate the sequence

P(c) = (Pk(c))&K .

B. The trellis section

of probability distributions:

The dynamics of a time-invariant convolutional code is completely specified by a single trellis

section, which describes the transitions (“edges”) between the states of the trellis at time instants

kandk+l.

A trellis section is characterized by:

● a set of N states S = {s1, SN}, The state of the trellis at time k is sk = s, with s C ~.

● a set of N . NI edges obtained by the Cartesian product

~= Sx~={el,..., ejN1},},

which represent all possible transitions between the trellis states.

‘I’o each edge e E ~ the following functions are associated (see Fig, 2):

● the starting state ss(e) (the projection of e onto $);

● the ending state sE(e);

s the input symbol u(e) (the projection of e onto U);

s the output symbol c(e).

The relationship between these functions depend on the particular encoder. As an example, in

the case of systematic encoders the pair (sS(e), c(e)) also identifies the edge since u(e) is uniquely

determined by c(e). In the following, we only assume that the pair (sS(e), u(e)) uniquely identifies

the ending state SE(c); this assumption is always verified, as it is equivalent to say that, given

the initial trellis state, there is a one-to-one correspondence between input sequences and state

sequences, a property required for the code to be uniquely decodable.

DRAFT December 17, 1997

EWNEL)E’1’’1O, DIVSA1,AK, MON’1’ORSI, POLLARA: SOF’’1’-1NF1’1’ SOl~’’I’-OI’I’U’ l’l’...

I

1

1

I

ss(e)

i
“-% , i

““-*< I““”-..,+
!

1
“-.*.! ““-.... O

“/

!
I
I e

I
I

u(e),c(e) I-.~+o !-.. ,Y.,.+.-+
““...+

I ““.. .
I ““””%I

Fig. 2. An edge of the trellis section

sE(e)

I’(C;I) -+ 1- P(u;o)

P(c;o)+-+ + P(U;I)

Fig. 3. The Soft-Input Soft-Output (S1S0) module

C. The S1S0 module

‘l’he Soft-Input Soft-Output (S1S0) module is a four-port device that accepts at the input the

sequences of probability distributions:

P(c; r) P(U; I) ,

and outputs the sequences of probability distributions

P(c; o) P(u;o) ,

computed according to its inputs and to its knowledge of the trellis section of the code.

111. ~1113 SIS() ALGORITHM

We assume first that the time index set K is finite, i.e. K = {1,..., n}. The algorithm by

which the S1S0 operates in evaluating the output distributions will be explained in two steps.

December 17, 1997 DRAFT

8 b;l’’.l’ ‘1’RANSAU’1’lC)NS ,VO1.. XX, NO. Y, MON’1’11 1999
-.

First, we consider the following algorithm:
L

● At time k, the output probability distributions are computed as

fk(c; O) = E. ~ A-l[ss(e)]R[~(e); ~]~dc(e);~]~k[~E(e)] (1)
e:c(e)=c

~k(u;O) = ~u~ A~_l[ss(e)]Pk[u(e); J]Pk[c(c); l]llk[sE(e)] . (2)
e:ti(e)=u

● The quantities Ak(.) and .h’k(.) are obtained through the forward and backward recursions,

respectively, as

Ak(s) = ~ Ak..l[ss(e)]Pk[u(e) ;I]P~[c(e);I] ,k = 1,.. .,n -1 (3)
e:sE(e)=s

Ilk(s) = ~ ll~+.~[sF’(e)].Pk+l[u(e);l]Pk+l[c(e);I] ,k = n -1,...,1, (4)
e:ss(e)=s

with initial values:

AO(S) =

{

1 S=5’Q

O otherwise

Iln(s) =
{

1 S=sn

O otherwise.

(5)

(6)

The quantities fi,, fiU are normalization constants defined as follows:

I-ic -+ ~Pk(c; o) = 1

fiu-+ ~i?+l;o)=l .
u

From expressions (1) and (2), it is apparent that the quantities Pk[c(e); 1] in the first equation

and Pk[u(e); 1] in the second do not depend on c, by definition of the summation indices, and

thus can be extracted from the summations. Thus, defining the new quantities

where H., HU are normalization constants such that

HC + ~pk(c;o) = I
c

I)RAFT

u

Dcccmbcr 17, 1997

13ENlWE’1’’lO, L)lVSALAR, MON’1’ORS1, POLIJARA: SOF’1-lNPU’J’ S014’’1-OU’1’1’U’1’... 9
-v

1,

it can be easily verjfied that they can be obtained through the expressions

Pk(c; 0) = Hcfic ~ Ak-l [ss(e)]Pk[u(e); I] Bk[sE(e)] (7)
e:c(e)=c

F’k(u; 0) = Hufiu ~ A~-I [ss(e)]p~[c(e); l]l~~[sk’(e)] , (8)
e:u(e)=u

where the A’s and B’s satisfy the same recursions previously introduced in (3).

‘l’he new probability distributions F’k(u; O), F’~(c; O) represent an updated version of the input

distributions Pk(c; 1), Pk(u; 1), based on the code constraints and obtained using the probability

distributions of all symbols of the sequence but the k-th ones Pk(c; 1), l’k(u; 1). In the literature

of “turbo decoding”, Pk(u; O), Pk(c; O) would be ca~led extrinsic injormations, They represent

the “added value” of the S1S0 module to the “a priori” distributions l’k(u; 1), F’k(c; 1). Basing

the S1S0 algorithm on ~k(”; O) instead than on fik(”; O) will simplify the block diagrams, and

related software and hardware, of the iterative schemes for decoding concatenated codes. For

this reason, we will consider as S1S0 algorithm the one expressed by (7), The S1S0 module is

then represented as in Fig. 3.

Previously proposed algorithms were not in a form suitable to work with a general trellis code.

Most of them assumed binary input symbol, some assumed also systematic codes, and none (not

even the original 13CJR algorithm) could cope with trellis having parallel edges. As it can be

noticed from all summations involved in the equations that define the S1S0 algorithm, we work

on trellis edges, rather than on pair of states, and this makes the algorithm completely general,

and capable of coping with parallel edges ancl, also, codes with rates greater than one, like those

encountered in some concatenated coding schemes.

A. The sliding window soft-input soft-output module (SW-SISO)

As previous description should have made clear, the S1S0 algorithm requires that the whole

sequence had been received before starting the smoothing process. The reason is due to the

backward recursion that starts from the (supposed known) final trellis state. As a consequence,

its practical application is limited to the case where the duration of the transmission is short (A-

small), or, for K long, when the received sequence can be segmented into independent consecutive

blocks, like for block codes or convolutional codes with trellis termination. It cannot be used for

continuous decoding of convolutional codes. This constraint leads to a frame rigidity imposed to

the system, and also reduces the overall code rate.

A more flexible decoding strategy is offered by modifying the algorithm in such a way that the

S1S0 module operates on a fixed memory span, and outputs the smoothed probability distribu-

tions after a given delay II. We call this new algorithm the sliding window soft-input soft-output

(SW-SISO) algorithm (and module).

December 17, 1997 DRAFT

10 E’1”1’ ‘l’RANSAC’1’lUNS ,VO1,. XX, NO. Y, MON’1’H 1999
-w

From now on, we assume that the time index set K is semi-infinite, i.e. K = {1,..., cm}, and
b that the initial state so is known.

The SW-SISO algorithm consists of the following steps:

1. If k = 1 initialize A. according to (5).

2. Store the output and input probability distributions l’k(c; 1) and }’k(u; 1).

3. If k < D skip the remaining steps.

4. Initialization of the backward recursion:

Ilk(s) = ; Vs . (9)

5.Backward recursion: it is performed according to (4) for i ❑: k – 1,..., k – D + 1 as

~;(S) = ~ ~]~+@(e)]~~+I[t@);~]~~+I[c(e);~] ,i =k – 1,.. .,k – ~~ +] . (lo)
e:ss(e)=s

6. The forward recursion and the probability distributions of the input and output symbols at

time k -- D + 1 are computed simultaneously

&~+~(c; 0) = ~ A~-~[ss(e)]P~-r)+~[u(c); J]J~,-~+,[sE(e)] (11)
e:c(e)=c

P&~+l(u; 0) = ~ Ak-D[ss(e)]Pk_Ij+ l[c(e); I] Bk_Ij+l[sE(e)] (12)
e:ti(e)=u

Ak-D+l (s) = ~ Ak-D[ss(e)]Pk_I)+l [u(e); l]})k-Ij+l[c(e); 1] (13)

e:sE(e)=s

7,Store the values of Ak_D+l(s).

Il. The sliding window S1S0 algorithm with grouped decisions (SWG-SISO)

In order to limit the number of recursions per decoded symbol, it maybe convenient to perform

the backward recursion only once every Nb/ trellis steps, and to make a decision on a group of

Nb/ symbols at the same time. This gives rise to the S1S0 algorithm with grouped decisions

(SWG-SISO), which consists of the following steps:

1. If k = 1 initialize AO according to (5).

2.Store the output and input probability distributions Pk(c; 1) and Ij(u; 1)

3. If k # D – 1 + ~~bl for some positive integer m skip the remaining steps.

4. Initialization of the backward recursion:

Bk(s) = * Vs . (14)

5. The backward recursion from time k – 1 to (m – 1)Nb/ + 1 is performed according to (4) :

J!)i(s) = ~ &+l[sF;(e)]~i+l [u(e);~]~i+l[c(c);]] ,, i = k –],. . .,m –]~bl + 1
e:ss(e)=s

DRAFT December 17, 1997

.

BMNE1)B’11’C), L)lVSALAR, MON’1’ORS1, POLLARA: SOF’1’-1NPU’1’ SOII’’J’-OI’I’U’ 1’1’... 11
-.

6, From time rnN61 to (m – 1)Nbi + 1 store the obtained values of l? ’s.
.. i’. The forward recursion and the probability distributions of the m-th block of symbols are

computed Simultancous]y from time (77I – l)Nb/ +] to mNb/:

l’i(u; 0) = ~ Ai-~[ss(e)]l’i[C(C) ;I]Bi[sE(e)]
e:u(e)=u

pi(C; O) = ~ Ai-l[ss(e)]Pi[u(c) ;~]Bi[#(e)]

e:c(e)=c

Ai(s) = ~ Ai_l[Ss(~)]Pi[IL(c); I] Pi[~(e); I]

e:sE(e)=s

i=(m–])Nb/ +1,7~lNb/

(15)

(16)

(17)

8, Store the values of A~rv~l.

It can be noticed that the SWG-SISO algorithm coincide with the SW-SISO when Nbl = 1,

C. The additive S1S0 algorithm (A-SISO)

The sliding-window S1S0 algorithms solve the problems of continuously updating the prob-

ability distributions, without requiring trellis terminations. Their computational complexity,

however, is still high when compared to other suboptimal algorithms like SOVA, This is mainly

due to the fact that they are multiplicative algorithms. In this section, wc overcome this draw-

back by proposing the additive version of the S1S0 algorithm. The same procedure can obviously

be applied to its two sliding window versions SW-SISO and SWG-SISO.

To convert the previous S1S0 algorithm from multiplicative to additive form, we exploit the

monotonicity of the logarithm function, and use for the quantities P(u; o), P(c; .), A, B their

natural logarithms, according to the following definitions:

7rk(c; 1) slog[~k(c; 1)]

?rk(u; 1) ~ log[Pk(u; 1)]

7r~(c; o) e log[Pk(c; 0)]

?r~(u; 0) : log[P~(c; 0)]

O~(S) ~ log[Ak(s)]

h(s) : log[llk(s)] .

With these definitions, the S1S0 algorithm defined by equations (7),(8) and (3),(4) becomes

the following:

December 17.1997 DRAFT

12 E’1”1’ ‘1’HANSAU’1’1ONS ,VOL. XX, NO. Y, MON’1’H 1999

o At time k, the output probability distributions are computed as

?r~(c;o) = log

[1
~ exp{~~-~[ss(c)] + ~~[u(e); ~] + p~[s~(e)]} + h, (18)

e:c(e)=c

7r~(u; 0) = log

[1
~ exp{~~-l[ss(e)] + T~[c(c); l] + P~[sE(e)]} + L (19)

e:u(e)ntf

where the quantities a~(.) and ~~(0) are obtained through the forward and backward recur-

sions, respectively, as

cl~(s) = log

[
x

1

exp{a~–~[ss(e)] + n~[ti(e);~] + r~[c(e); 1]} ,k =), . . .,rz – 1 (20)
e:s E(e)=s

pk(s) = log

[1
~ exp{P~+l[~E(e)l+ T~+IIu;~1+ ~~+l[c(e);~l},k = n-1,.. .,(W)

f=s(e)=s

with initial values:

{

o S=so
QIJS) ==

– co otherwise

{

@n(s) == _: Ot;::e

The quantities h., hti are normalization constants needed to prevent from an excessive grow-

ing of the numerical values of a’s and /3’s.

The problem in the previous recursions consists in the evaluation of the logarithm of a sum of

exponential like3

a=lOg[$exp{ai}l~ (22)

To evaluate a in (22), we can use two approximations, with increasing accuracy (and complexity).

The first approximation is
L

[1a = log ~exp{ai} @ a~ ~
i

where we have defined
A

a~=maxa~, i=l,L.
i

‘l’his approximation assumes that

UM>>IIi, v(I~#IIM.

3The notations in this part are modified for simplicity, and do not coincide with previous ones.

(23)

DRAFT December 17, 1997

kW;Nk~l)lJ1’’l’O, L)lVSALAK, MON’1’ORS1, POLLARA: SO~l’-lNl’U’l’ SOl~’’I’-OI’}JUJl’l’... 13
. .

. .
It is almost optimal for medium-high signal-to-noise ratios, and leads to performance degrada-

tions of the order of 0.5-0.7 dIl for very low signal-to-noise ratio.

lJsing (23), the recursions (20) and (21) become

CqJs) = ~:yfi=~{w-l[wl + ~k[~(e);~l+ mk(wl} k = 1,.. .,~ - I (24)

pk(s) = max {~k+d@(e)]+~k+d@) ;~]+~k+dc(e);l]} k = ‘- 1>,1, (25)
e:ss(e)=s

and the m’s of (18) and (19):

7r~(c;o) = max {@k_][sS(e)]+ 7Tk[U(f3);~]+ /?k[SE(e)]}+ h.
e:c(e)=c

(26)

Tk(tL; ~) = max {@k-l [S’s(e)] + Tk[c(e); ~] + fl/c[#(e)]} + hu . (27)
e:u(e)=u

When the accuracy of the previously proposed approximation is not sufficient, we can evaluate

a in (22) using the following recursive algorithm (already proposed in [1I], [25]):

~(1) = al

a(~) = max(a(l-l), aj) + log[l + exp(–]a(~-l) – al])] , 1 = 2, . . . ,L (28)

~ ~ &

To evaluate a, the algorithm requires to perform (L – 1) times two kinds of operations: a

comparison between two numbers to find the maximum, and the computation of

log[l + exp(–A)], ,A >0.

‘The second operation can be implemented using a single-entry look-up table up to the desired

accuracy (in [11] 8 values were shown to be enough to guarantee almost ideal performance).

The additive form of the S1S0 algorithm can obviously be applied to both versions of the sliding

window S1S0 algorithms described in the previous section, with straightforward modifications.

In the section of applications, we will use the additive form of the second (simpler) sliding-window

algorithm, denoted by additive, sliding-window S1S0 with grouped decisions (ASWG-SISO).

D. The S1S0 module as a MAP decoder

Consider the transmission system shown in Fig. 4. A source generates a sequence of n symbols

uk with a constant a-priori distribution p(u) = P[uk = u], These symbols arc encoded by a trellis

encoder that starts at time k = O in the state So = S1 and generates a sequence of n output

symbols ck ending in the final state Sn = Sn that is supposed to be known at the receiver.

December 17, 1997 DRAFT

14 E’11’ ‘1’RANSAC’1’1ONS ,VOIJ. XX, NO. Y, MON’1’H 1999
.

u c Y P[ylc]?.
P(u;o)

Source Trellis Memoryless + soft
- encoder + Channel Demodulator

nq

S1S0 + F(u;o)
4-

P(u)

Fig. 4. A trellis-coded transmission system with the S1S0 module as a MAP decoder

The memoryless channel maps

according to a known conditional

tbe transmitted symbols Q into the the received symbols y~,

probability density function (pdf)

~)(lJIC) ~ ~[yk= Y[ck = c].

For each received symbol gk, the soft demodulator evaluates the set of probabilities P[l~ =

yk lck = c] according to its knowledge of the channel pdf p(y[c).

Our objective is to prove that the S1S0 module, used as in Fig. 4 so that its inputs are defined

as follow:

~k(~;~) cx P[Uk = u] = l’(u)

~k(c; 1) ~ p[yklck = C]

permits to obtain at its output the following functions:

~k(~;~) cx P[y~l~k = u] ,

~k(~;o) u p[y~,uk = u] ,

where y~ is a synthetic notation for the sequence (Y] = Y1~. ...1: = yn). As a consequence, its

outputs can be used to perform a symbol-by-symbol MAP decision on the source symbols.

In order to compute ~k(U; O) consider the joint probability that a given edge e = (Ss(c), u(c))

occurs in the trellis at time k and that the received sequence is y?; it is given by

p[& = e, y:] = PIS&l = Ss(e), uk = t@),yf-l,yk, y~+l]

—— PIS~-l = ss(e), y~-l] P[Uk = u(e), Yk, !l+llsk-1 = Ss(e)l
—— p[sk_l= Ss(e), &l] p[uk = u(e), YklSk-1 = Ss(e)]

p[y~+llsk-1 = Ss(e), Uk = U(e)].

December 17, 1997DRAFT

BBNb;l)E’1’’l’O, DIVSALAK, MON’1’ORS1, 1’OL1,ARA: SO1’’1’-INLJL1’1’SOII’’I’-OI’I’U’ 1’1’... 15
. .

where P[vf+l l$k–I = $S(e)t Uk = u(e)] = P[yf+l Isk = SF;(C)]. We used the fact that given a
.. state at time k, the future events (after the time k) are independent of the past events (before

the time k). Also based on the same fact we have

p[~k = U(e), ?J/c[Sk-l = Ss(e)] = P[yklsk-1 = Ss(e), Uk = U(e)]

x p[~k = U(C)[Sk-1 = Ss(e)]

= P[yklck = C(f3)]p[Uk = ~(e)].

I,et us define

Ak(S) = P[sk = s,yf]

~k(s) = PIY;+l Isk = S] .

The Ak(s) is related to the probability of state at time k given the past observations, and

~~k(s) is related to the probability of state at time k given the future observations. Then we can

obtain the following forward recursion for computation of Ak(s):

~k(s) = l’[sk = s,yf]

= ~ p[sk-~ = Ss(e),Uk = ~(e),!)f]
e:sE(e)=s

‘-]]]’[uk= U(e), yklsk-1 = Ss(e)]= ~ p[Sk_l = Ss(e), yl (29)

e:sE(e)=s

= ~ Ak_,[Ss(e)]l)[yklCk = C(e)]p[uk = u(c)] , ~ = 1,.. .,n

e:sE(e)=s

Similarly we can obtain the following backward recursion for computation of ~~k(s).

~k(s) = P[Y2+1

=x
e:ss(e)=

‘x

Sk = s]

P[uk+l = u(~), y;+l]sk = SS(C)]

p[y~+~lsk = Ss(e), Uk+l = ~(c)]p[uk+l = ~(c), Yk+l [Sk = ‘s(d)] (30)

e:ss(e)=s

= ~ ~k+,[sE(~)]p[yk+.,[ck+l=C(f3)]p[Uk+l = ~(e)] , k = ‘L -1,0 ‘, 10

e:ss(e)=s

The recursions (29) and (30) are equal to equations (5) and (7) of [6].

Using definition of Ak(s) and ~k(s) we obtain

December)7, 1997 DRAFT

16
. .

E’1”1’ ‘1’RANSACY1’1ONS ,VOL. XX, NO. Y, MON’1’H 1999

. .
P[Ek = e,y~] = A~_l [sS(e)] P[yklC~ = c(e)] I’[Uk = u(e)] Il~[sE(e)] . (31)

We call (31) the Key Equation. TO obtain the a-posteriori probabilities used in the MAP

decision on the input symbols, we need to sum (31) over the proper subset of edges:

P[u~= u,yy] = ~ P[.E~ = e,y~]
e:u(e)=u

= ~ Ak-l[ss(e)] Ilk[sE(e)] P[yklCk = c(e)] P[U~ = u(e)] . (32)
e:u(e)=u

The RHS of (32) corresponds to the expression (1) of ~k(u; O), and thus we have proved that

the S1S0 output yields the required APP’s.

IV. CONSTRUCTION AND ITERATIVE DECODING OF CODE NETWORKS

In this section, we will introduce six building blocks (the most important one is the S1S0

module previously described) to construct networks of codes, and the corresponding soft-input

soft-output blocks to be employed in their iterative decoding. The construction is very general,

and encompasses multiple para~lel concatenated codes (in the case of two convolutional codes,

they are known in the literature as “turbo codes”), multiple serially concatenated codes (analyzed

in [26]), and more complex concatenate ions.

We will show that, no matter how complicated is the code network, an iterative decoding

scheme can be immediately devised based on the network structure. Although suboptimum, the

iterative decoding yields remarkable performance, so that the designer is provided with a great

range of trade-offs between performance and complexity to choose from.

To keep the rather abstract description well grounded to the earth of practice, we will include

within the exposition several examples, whose aim is to show the potential of this new approach

to code design.

A. The code network building blocks

To build a general code network, we need the six building blocks of Fig. 5 (note that two blocks

have been put together in the figure, i.e. the parallel to serial and serial to parallel converters).

They are:

1. The trellis Encoder E, already described in Subsection 11-A.

2. The lntedeaver I: It provides at its output a sequence Y that is a permuted version of the

input sequence X.

3. The Mapper, which maps the sequence X = (Xl,..., X~) whose symbols belong to the

alphabets X = A’l x . . . x X~ into the sequence Y = (Yl, ..., Yn) with symbols belonging

DRAFT December 17, 1997

. . HEN E1)E’11’0, LllVSALAR, MON’1’ORS1, POLLARA: SOF’1’-1NPU’I’ SO}~’’l’-Ol’k’U’l’l’... 17

to the alphabets Y = Y1 x... x Y.. The mapping is performed according to the memoryless

function:

{

?/I(x) = Yl(xl,. ..,%)

y(x) =

Yrl(x) = !hl(m,. . .,%)

In a classical system, the Mapper can correspond, with m = 1, to the mapper that precedes

the demodulator, which, in turn, maps the multiplexed symbols into the signal waveforms

on a one-to-one basis. As an example, the n = 3 Xi can represent three binary sequences

with symbols belonging to X2, that are mapped into m = 1 symbol Y1 belonging to the

signals drawn from an 8-PSK constellation. However, we do not assume the mapping to be

one-to-one so that in general the inverse mapping may be not defined. For classical encoders,

the one-to-one relationship between input and output is mandatory for unique decoding; in

code networks, on the other hand, this constraint must be satisfied by the network as a

whole, but not necessarily by all its constituent modules.

4.The Parallel-to-Serial P/S module takes n input sequences belonging to the same alphabet

A’ and converts them into a unique sequence concatenating all the inputs. Symbolically, we

can write:
(*n)z ~ (~)nz

so that the output symbol rate is n times greater than the input symbol rate.

5. The Serial-to-ParaZiel S/P module takes an input sequence with symbols belonging to the

alphabet X and splits it into 71output sequences belonging to the same alphabet, Symboli-

cally, we can write:

(x)~ ‘4P (x”)~i’ ,

so that the output symbol rate is n times sma~ler than the input symbol rate.

6. The llroadCastcr IIC takes the input sequence X and replicates it into the sequences Y1 =

. . . =Yn =x.4

B. The iterative decoder building blocks

To each of the building blocks previously described, there corresponds a. module to be used in

the iterative decoder. With reference to Fig. 5,5 we describe in this section the input-Output

relationships of the modules, that can be employed in a decoding network.

4This blocks is actually a special case of the mapper when n = 1, m = 1 and VI(z) = . . . = y~(x) = z. We prefer

to keep it distinct to simplify the representation of the code networks.

51n the figure, we use shorthand notations for simplicity: the symbol 1’(.) means P(.; 1) for the arrow pointing

inside a block, and P(; O) for the arrow pointing outside.

December 17, 1997 DRAFT

18 Wl”l’ ‘lRANSAC1’IONS ,VOL. XX, NO. Y, MON’1’11 1999

1. The S1S0 module, already described in Subsection H-C.

2.The Interleaver\Deinterleaver 1/1- 1. It reorders the time axis k so that the input-output

relationships are time-dependent, as

I’k(x = q;o) = ~I(k)(Y = 9;0 (33)

~k(y = q;~) = ~~-l(k)(~ = q;]). (34)

From the equations, we notice that the two sections I and 1-1 act independently.

3. The Soft Mapper (SO MAP). It evaluates the output pdf over the sets A’i, i = 1, ..., m and

yj, j= l,..., n through its knowledge of the input pdf defined on the same sets assumed to

be independent and the mapping y = y(x).

The output probability distributions are computed as follows

(35)
X:yj(x)=q ~=1

l#J
k=]

Their expressions will be explained in the following example,

Example 1

Consider the system of Fig. 6, where m parallel sequences of symbols X are mapped by the mapper into

n output sequences Y that are transmitted independently on n memoryless channels characterized

by their conditional probabilities. The soft demodulator observes the channel output sequences Z

and generates the sequences of conditional probabilities P(z[y).

Insert now the module SOMAI’ after the soft demodulator, with input probabilities

P(xj; q = P(l!i)

P(yj ; 1) = Pk(Zjlyj) = ~[~k = %jl~’j= Yj] .

where the first equality derives from some a-priori information about the information symbols, and

the second uses directly the outputs from the soft demodulator.

We want to prove that the the products of outputs from and inputs to the SOMAP module yield the

a posteriori probabilities for both information symbols xi and transnlitted symbols ~j, i.e.

DRAFT

P(Xi;I)P(Z~; O) = I’(Zi, Z)

~(Yj; l)p(Yj ;0) = ~’(Yj, ~).

December 17, 1997

131GNlWE’1’’l’O, DIVSA1, AR, MON’1ORSI, POI,LARA: SOF’1’-1NPU’1’ SOF’I’-OU’I’PU’1 ’... 19
.,

The first can be used, as an example, to perform the symbol-by-symbol maximum a posteriori detec-
-. tion.

From Bayes rule we obtain

P(ZIZi) ‘= ~ P(ZIX, Zi) . P(XIXi)

XEX

Since, given x, z does not depend on xi we have

From the statistical independence of the noise samples we obtain
n

p(zl~i) = ~ ~p(~ll!/l(x)). P(xlxi)

XEXI=l

Considering the last term of the RHS of the last equation

P(XIXi) =

{

rIyzjP(zk) ,xi(x)= xi

o , Q(x) # xi

we finally obtain

P(zlzi) = ~ fi ‘(ZIIYI(X))fi ~’(x~)
XCx 1=1 k=l

S,(X)=Z* k#i

In the same way

P(yj, z) = ~ P(Y,,+)HX)
XEX

m

= ~ P(Y,, Zlx) l-J p(~k)
XEX k=l

Consider now the first term of the RHS of the last equation

P(yj, Zlx) =

{

P(zly(x)) yj (x) = yj

o , Yj(x) + Yj

we finally get

P(yj, z) = ~ ~p(~I!YI(x)) H~’(xk)
.6%’ 1=1 k=l
Vj(x)=Vj

4. The So~t-Output Serial-to-Parallel (SOSP). The output probability

puted as follows:

Pk(xi; o) = I’kn+i(y; I) i = 1,. . .,n

P~.n+i(g; O) = l’~(~~; 1)

o

distributions are com-

December 17, 1997 DRAFT

20
.’

lJ1”l’ ‘11{AN SAC’1’1ONS ,VO1,. XX, NO. Y, MON’1’H 1999

Also in this case, being the SOSP a bidirectional device, it is the inverse of both the S/F’ and

P/S modules. As for the interleaver, each output depends only on the corresponding input,

so that the SOSP module can be seen as two separate modules working independently.

5. The Soft-Output BroadCaster (SOBC). It is a device with n + 1 inputs and outputs. A

given output does not use the information from the corresponding input, in order to prevent

from undesired information feedback loops. The SOHC operates according to the following

input-output relationships:

P(Z; O) = J-JP(yi; I)
i

P(yj; o) = P(z; q~P(yi; I) .
i#j

AH previous input-output relationships can be rewritten using the additive logarithmic ap-

proach; in software and hardware implementation of the algorithms, this solution may be more

efficient.

V, DECODER COMPI.EXITY

The decoding algorithm works in a distributed, iterative fashion. Its complexity depends on the

number of soft-input soft-output blocks employed, and on the number of iterations. The second

aspect (number of iterations) will be discussed later. We concentrate now on the complexity of

each soft module, defined in terms of computation and memory requirements. We will refer to

the multiplicative versions of each block, so that the computational complexity will be measured

as the number of multiplications and additions per decoded symbol. Extension to the additive

versions is straightforward, and simply requires the substitution of multiplications by

and of additions by the operation performed in (28).

A, Algorithm S W-SISO

For a convolutional code with parameters (ko, no), and number of states N, so that

additions

NI = 2k”

and No = 2“”, the algorithm SW-SISO requires to store the N values of a’s and D(iVI + No)

values for the input unconstrained probabilities ~’k(ti; 1), ~’k(c; 1).

Moreover, to update the A’s and B’s for each time instant, it needs to perform 2 x N . N1

multiplications and 2 x N cNI additions. To output the set of probability distributions at each

time instant, we need a D – 1-times long backward recursion, Thus the computational complexity

requires overall:

Q 2D . N . N1 multiplications

● D . N . NI additions.

in Table I we report the previous values, together with those referring to the classical Viterbi

algorithm, for the sake of comparison. With respect to it, the SW-SISO algorithm requires a

DRAFT December 17, 1997

B14NE1)B’1’’1’O, DIVSALAR, MON’1ORS1, POLLARA: SOk’’l-lN}’U’l’ SOFJ’-OU’I’I’U’1 ’... 21
..

Block

11ZtIIl e

Viterbi Alg.

SW-SISO

SWG-SISO

1/1-1

SOMAP

SOSP-SOPS

SOBC

Delay Computations (per decoded symbol) Memory requirements

D Products Sums

5V 2NNI NNI DN

5U D . 2NN1 D . NN1 D.(NI+NO)+N

2KU!245:N’’’2NN,WNNI !“(NI+No)+NblJ”I
N 10 0 I 2NNa- 1
0 I (n+ m)Nx (n+ 772)Nx I o I

n 10 0 I n I
o (n+ l)NX (n+ l)Nx o

TABLE I

DELAY AND COMPLEXITY OF TRE SOFT-INPUT SOFT-OUTPUT MODULES

number of computations D times greater, and less memory.

Ii’. Algorithm S WG-SISO

TO compute the APPs of a block of N~l symbols, the SWGSISO algorithm requires a D – 1

long backward recursion and an ~bf long forward recursion. Thus the computational complexity

requires overall:

Q?+&Kd . ‘2~~~ multiplicationso

Q2+.#Yd . ‘2NN1 sums.
●

and a memory requirement equal to D(NI + No) + NblN. These values are reported in Table 1.

A comparison with the Viterbi and the SW-SISO algorithms shows that, for large Nbl, and

keeping constant the relationship D = Nbl + 5V – 1 between D and Nb~, the complexity of the

SWG-SISO algorithm tends to be only twice that of the Viterbi algorithm, with essentially the

same memory requirements. Also, the SWG-SISO algorithm shows, for large Nbl, a reduction by

a factor D of complexity with respect to the SW-SISO.

The complexity analysis of the other soft modules is straightforward, and is left to the reader.

In ‘l’able I we summarize the delay and implementation complexity of each decoding soft module

as a function of their characteristic parameters. ‘The implementation complexity is measured in

terms of number of operations per decoded symbols and in terms of memory requirements.

It is important to mention that the estimate of the implementation complexity reported in

the Table I does not consider some important implementation issues that are summarized in the

following list:

December 17, 1997 DRAFT

22 Ml”l’ ‘1’RANSACY1’1ONS ,VOL. XX, NO. Y, MON’1’H 1999
. .

● lt is possible to use probability density functions normalized with respect to one of the

. .
symbols, so that the normalized probability of that symbol is by definition 1 and does not

need to be stored. As a consequence, for the binary case, a probability density function can

be represented using a single likelihood ratio.

● When a symbol set is defined as the cartesian product of different sets:

and the pdf over the component

X can be computed as follows:

x=(xl,.. .,xn) ,

sets are given, the probability y of a symbol z belonging to

P(z) = fi P(q) (38)
i= I

So that instead of storing a single pdf over

\A’[= [X,l...lxnl

symbols, it is suficient to store the n pdfs over the componcmts sets that requires only

/il’,l+... A/nlnl

storing units.

On the other hand, this solution increases the computational requirements as (38) must be

computed each time one needs the probability of a given symbol belonging to IX].

As an example, using a rate k/n binary convolutional encoder the input and output set are

respectively k-tuples and n-tuples of bits. Use of the previous simplification (i.e. storing the

bit likelihood ratios instead of symbol pdfs) leads for the S1S0 module to the implementation

requirements of Table 11.

. A given interleaver can be realized with a minimum amount of delay and memory according

to suitable design rules [27]. The values reported in Table I refer to an interleaver realized

using a random access memory with memory Nint, in which the inputs are written following

the natural ascending order and the outputs are read following a permutation law of period

Nint .

V]. EXAM PI, ES AND SIhf UIJATION Rix3u IJm

The following examples should provide more insight into the procedure of constructing and

decoding code networks. In the code description and figure drawing, we will always omit the

delays involved: they are required for a practical implementation, but bring an unnecessary

heaviness to the otherwise neat block diagrams.

DRAFT December 17, 1997

BWNBDM’1’’1O, L)lVSALAR, MON’1’ORSl, POL1, ARA: SOF’1’-1NI’U’1’ SOF’I’-OU’I’}’U’1 ’...
.a

-- ‘+ y
trellis Encoder

‘--kl--- y
Interleave

P/s s/P

:=ElHE:
Parallel to Serial to Parallel

BroadCaster

Encoder

‘(X)=FS”I=’(Y)

‘(X)=H--I=P(’)
L I

?!ElxI=. . .
‘SOA4AP

HY])
P(Y2)

P(yn)

23

‘(X=FI-l=“x)
SOPS SOSP

Decoder

Fig. 5. The]nodules of a code network.

_EL._lrY.
S1S0 (Binary case) II 5v –

Computations (per decoded symbol) Memory requirements

Products ‘“’”s ~

(k+ 71)1. . NNI D . NN1 2D(k + n) + N

TAB1,E 11

IMPI,EMENTATION REQUIREMENTS FOR THE S1S0 MODULE REI,ATIVE TO A k/n ENCODER USING THE

BIT-LEVEL STORAGE

Ikcenlber 17, 1997

24 b~l”l’ ‘1’HANSAU’1’1ONS ,VOIJ. XX, NO. Y, MON’1’H 1999
*.

. .

RZ,IY,) ~ SOMAP /l P(x,;o)

: P(y,;o) I \ / l-q%)
I

I I x
‘ P(Z”IYJ

J/ \~p@
~~

P(yn;o) ‘ P(xm)

Fig. 6. A transmission system system employing mapper and soft-mapper.

A, A parallel concatenated code with 8-PSI< modulation

Consider, as a first example, a parallel convolutional concatenated code (turbo code, or PCCC)

obtained as in Fig. 7, where the input binary stream is replicated into three separate flows: the

first is left unchanged, the second is encoded by a rate 1 recursive, 4-state convolutional encoder

(EI in Fig. 7) and the third is permuted by the interlcaver I with length Nint and then encoded

by the convolutional encoder E2 = 1~1.

The three bits at the output are then mapped by the Mapper according to the Gray coding

and transmitted over an AWGN channel using an 8-PSK modulation, obtaining a bandwidth

efficiency of 1 bit/s/Hz. In practice, this is a trellis-coded modulation scheme. Overall, the code

network requires two trellis encoders, two broadcasters, one interleave and one mapper,

The received signal enters the soft-demodulator, which provides the conditional probabilities

P[Y~ = yklikfk = r-n]

for all the PSK signals, according to its knowledge of the channel pdf p(ylrn). These quantities are

fed to the decoding network (shown in Fig. 7) that is constructed specularly from the encoding

network replacing each coding module with the corresponding decoder module of Fig. 5.

Two observations are pertinent here:

1. The inputs to the decoding network are the outputs of the coding network and vice-versa.

2, Each module of the decoding network is a bidirectional device so that in each section there

are two opposite flows of informations. This feature of the decoding network originates

feedbacks in the scheme that are responsible of the “turbo” nickname [)].

In a practical implementation, we have two possible solutions to build the iterative scheme, The

first corresponds to the one shown in Fig. 7, in which every blocks performs the required number

of iterations successively: this solution requires that the processing speed of the implementation

be sufficiently higher than the transmission speed, and that the encoder state is completely

DRAFT llecen~ber 17, 1997

*.

-.

BEN EDIJ1lW, L)lVSAIJAR, MON’1’ORSI, POLLARA: SOF’1’-1NPU’1’ WF’1’-OU’1’PU’1’...

U1 c1
~ BC El ● + Mk

U2 C2
El

P(u)

Jr a priori
information

25

Fig. 7. The parallel concatenated convolutional coding scheme and its decoding network.

known at the receiver periodically (trellis termination and block-oriented transmission). The

second solution splits each block in ni (ni being the number of iterations) blocks that work in a

cascaded fashion, like in Fig. 8. In Fig. 8, we have drawn separately the first stage and the second

(equal to all successive stages) of the cascaded implementation. The dashed lines at the outputs

of the blocks mean that the corresponding quantities are passed to the next stage, whereas the

dashed lines entering the delays symbols in the second (successive) stages represent quantities

arriving from the first (previous) stage. The correspondence between origin and destination of

dashed lines is obvious; an example is represented by the “A” symbols in the figure. The delay

symbols represent the physical delays that must be applied to the various quantities for a proper

operation of the iterative decoder. This implementation does not require trellis termination and

L)ecernber 17, 1997 DRAFT

26 b;l”l’ ‘lRANSAC’1’IONS ,VO1.. XX, NO. Y, MON’1’H 1999

----- ----- ----- ----- --

;
I

First stage
I
I
I
1

-lxl-- 4r : + 2 ‘~

I

-1
v @

r--
$ w v

r--

v;

* b
Delays:

❑ + SISO+lnterleaver ;--- 4

● -+ None w
----- ----- ----- ----- I

; Successive stages I

@
I
I

I i I

1

I
b -1I % ~ I

+
v

4 t],--
9 I

‘- ->
r--

v; v

b 4
I

—6 l-- 4
w

Fig. 8. The decoding network of the parallel concatenated coding scheme in a cascaded implementation.

works at the same speed of the incoming data.

We have simulated the PCCC co-decoding scheme of Fig. 7, for an interleave of length Nint =

1024 using the ASWG-SISO and the look-up table algorithms. 1’o show the importance of the

feedback from the S1S0 modules to the SOMAP module, we have implemented two versions of

the demodulator, one without the feedback (as it has been done so far in the literature), and

the second with the feedback. The results are shown in Fig. 9, where we report the bit error

probability versus the signal-to-noise ratio for three values of the number of iterations of the

DRAFT December 17, 1997

13};N131)N’1’’1’O, L)lVSALAR, MON’1’ORS1, POLLARA: SOl~’’l’-lNPl’l’ SOF’J’-OU’l’l>U’l’...

1. .
I I I

~ ------------

with feedback to the SOMAP —
without feedback to the SOMAP ----------- \

27

0 0.5 1.5 2

Fig. 9. Simulation results for the coding scheme of Fig. 7 with and without the feedback to the SOMAP.

decoding algorithm. At ~’b(e) = 10-4, a gain of 0.5 dB is achieved through the proper use of the

SOMAP module.

As an alternative to the previous scheme, the three bits at the output of the PCCC, instead

of being transmitted in parallel with an 8-PSK modulation, can be serially converted and then

transmitted using a binary PSK modulation (see Fig 10). In this case, the Mapper at the

modulator front-end is replaced by a simple P/S. Consequently, the decoding network can be

simplified, since the correspondent SOPS does not use the information from the decoding netwo*k

to update its output (dashed lines in Fig. 10).

B. A serial concatenated code with 2-PSI{ modulation

As a second example, we construct the serial concatenation of two convolutional codes (SCCC)

as shown in Fig. 11. The input sequence is encoded by a rate 1/2, 4-state, systematic recursive

convolutional encoder El, and the encoded sequence is interleaved by the symbol interleaver I.

The output symbols from the interleaver are then encoded by the rate 2/3, 4-state, systematic

Lkcernber 17, 1997 DRAFT

28
. .
●

E’1”1’ ‘1’RANSAC’1’IONS ,VO1,. XX, NO. Y, MON’1’kl 1999

U2 C2
+

‘2

P(u)

.. .

pk(m)=p~kl~k=m] :

+ qd$(u)p(~l) SISOI4+. 4“””””. P(u)

r] I
a priori

information
1

:~

HC2)
.

Fig. 10. The parallel concatenated convolutional coding scheme with DPSK modulation and its decoding

network.

recursive convolutional encoder 112. We obtain a rate 1/3 SCCC. The output symbols are trans-

mitted over an AWGN channel using binary PSK modulation, The concatenated code requires

two trellis encoders and one interleaver.

The iterative decoder is shown in the same l’ig, 11, and is obtained specularly in a straight-

forward fashion.

The previous scheme uses a symbol interleaver acting on symbol belonging to a quaternary

alphabet. In some cases, it can be more efficient using a bit interlcaver, preceded by the cascade

of a Mapper (4 + 2 x 2) and a P/S module, so as to obtain the desired bit sequence. The inverse

block (S/P+ SOMAP) must be placed before the inner encoder E2 to regenerate the proper input

DRAFT December 17, 1997

kWNl!!l~N’1’’J’O, L)lVSALAR, MON’1’ORS1, POLLARA: SOFJ’-INPU’1’ SOF1’-OU’1’1’U’J’...
,-

29

. . symbol
interleaver

u c1
El ‘+ I

W@ ~ a m]) . w])
+ + r] ●

S1S02 SISOI

T

F(ul)
P(cJ=P(Yk2)4 -

I

a priori
information

Fig. 11. The serial concatenated coding scheme using a symbol interleavcr and its decoding network.

symbols. The obtained structure is shown in Fig. 12.

The performance of the SCCC with interleaving at bit level as in Fig. 12, obtained by sinlula-

tion, are shown in Fig. 13, for an interleaver with length iVimt= 32,768, which yields a decoding

delay of 16,384 measured in information bits. ‘l’he scheme simulated uses two 4-state encc]ders

with rate RI = 1/2 and R2 = 2/3. The bit error probability is plotted versus the signal-to-noise

ratio ~b/NO with the number of iterations as a parameter.

C. Hybrid concatenated codes

Another example regards two different networks obtained through the concatenation of con-

stituent cocles part in parallel and part in series. We call them hybrid concatenations. Two

examples of hybrid concatenations are reported in Figs, 14 a~~d 15, where we show both the

encoders and iterative decoders. Both hybrid schemes involve the use of three CCS and two

interleavers. In Fig. 16 we show the bit error probability simulated performance of a rate 1/4,

Type I hybrid scheme employing two interleavcrs with length Nimf = 256 and the following

three convolutional encoders: El is a 4-state rate 1/2 feedforward convolutional encoder with

generating matrix

G(D) =[1+D+D2,1+D2] .

E2 is a 4-state rate 1/2 convolutional encoder with generating matrix

[

l+IP

1
G(D)= 1,1+ D+J)2 ,

December 17, 1997 DRAFT

—

30
. .

B’1”1’ ‘1’RANSAC’1’IONS ,VOL. XX, NO. Y, MON’1’H 1999

. .

u-c‘%
interleave -.

a priori
information

Fig. 12. The serial concatenated coding sc.hcme using a bit interleavcr and its decoding network.

1

10-2

10-4

10-5

0

-

0.2 0.4 0.6
E@O [dB]

0.8

❑1

\

1

Fig. 13. Simulation results for the coding scheme of Fig. 12. El is a nonrecursive 4 state encoder with

rate RI = 1/2 and E2 is a recursive 4 state encoder with rate 1/2 = 2/3. The interleaver length is

Nini = 32,768

DRAFT December 17, 1997

BENW)IS’1’’1O, L)lVSA1,AR, MON’lURS1, POLLARA: WF’1’-1NPU’1’ SOF’I’-OU’1l’U’1 ’... 31
.-

-.

HCCC 1

“L-
1101

s. ‘ I

4
~“ II

:1S03
I

Fig. 14. Co-decoder for hybrid concatenation. (Type 1)

uniformly punctured in the parity check bit in order to obtain a rate 2/3 encoder. E2 is a 4 state

rate 1/1 convolutional encoder with generating mat rix

The bit error probability is plotted versus the signal-to-noise ratio for a number of iterations

in the range 1-5.

I). “Selj’’-concatenated codes

Consider the concatenated code shown in Fig. 17, together with its iterative decoder. It is

composed by a rate 1/3 repetition code concatenated, after interleaving (Nint = 256) and parallel-

to-serial conversion, wit h a 4-state rate 1/1 recursive convolutional encoder with generating

matrix

G(D) =
1 + 112

1+ D+D2

Transmitting also the information bit, we obtain overall a rate 1/4 code. Since the outer

repetition code can be represented using one broadcasters, whose soft-input soft-output relation-

ships are straightforward and do not require any computations, we need in this case only one

S1S0 module (see the decoder in Fig. 17). For this reason, we call this scheme Type I “self”-

concatenated code with interleaver. In Fig. 18 we plot the simulated bit error probability versus

December 17, 1997 DRAFT

32 M’1”1’‘1’RANSAC’1’IONS ,VOIJ. XX, NO. Y, MON’1’H 1999
,-

. .

+
‘1

HCCC 2

-7S1S02

1

0.1

0.01

0.001
3
-s
&

0.0001

1e-05

1e-06

1e-07

Fig. 15. Co-decoder for hybrid concatenation.

o 0.5

Fig. 16, Hybrid concatenation (Type I).

1-5 iterations.

I

(Type 11)

1

Simulated

2
E@!05[dB]

bit-error probability

2.5 3

versus signal-to-noise ratio for

December 17, 1997

.-

13ENEl)E’1’’l’O, DIVSALAR, MON’1’ORSI, l)(.) LLARA: SOF1-lNPU’1’ SO1+’’I’-OI’I’U’ l’,,.,,

Type I Self concatenated code
SoBc

I
----- ----- ----- ----- ----- ----- -

I I I
I I

33

1-

Fig. 17. Type I Self concatenation. Coding and decoding structures.

the signal to noise ratio for 1-5 iterations (for a fair comparison with turbo codes two uses of

S1S0 were considered as one iteration),

Consider now the Type II rate 1/3 self-concatenated code shown in F’ig. 19 together with

its iterative decoder. A broadcaster produces three replicas of the input sequence: the first is

directly sent to the modulator, while the second and third are permuted in different ways and

jointly encoded using a 16-state rate 2/2 binary convolutional encoder with generating matrix

The simulation results for this concatenated code using the iterative decoder in k’ig. 19 are

shown in Fig. 20(a) for input block Njnt = 256 and Fig. 20(b) for input block Nint = 1024.

E. Iterative decoder of a standard convolutional code

Convolutional codes, and, more generally, trellis codes, can be decoded using several decoding

algorithms. The MI, sequence decoding algorithm is the universally known Viterbi algorithm [28],

suitable for codes of low-medium complexity (constraint lengths up to 15). The Viterbi algorithm

presents memory requirements and computational complexity that increase exponentially with

the constraint length. Thus, when dealing with very long constraint lengths (like for example in

deep-space applications) to obtain large coding gains, one must abandon the Viterbi algorithm,

December 17, 1997 DRAFT

34 IJ’1”1’‘1’}{ ANSAUJ’1ONS ,VC)l.. XX, No. Y, MON’1’H 1999
,.

. .

0.1

0.01

0.001

0.0001

1C-05

1e-06

1e-07

o

Fig. 18. Self concatenation.

0.5

\

‘\””

\

\

=x,
\

Self Concatenated Co
Turbo Co

‘x.‘\)6.’.

\

\

1 2
E&/io5[dB]

2.5

‘=k.-.

‘w

Simulated bit-error probability versus signal-to-noise ratio for 1-5 iterations.

--lfm(Hlllxd
Type

3

II Self concatenated code
SOB

4--
+

4-- 4

Fig. 19. Type II Self concatenation. Coding and decoding structures.

lWNII;DE’110, L)lVSALAR, MON’1’O1{S1, POLLARA: SO1+’’1-1NPU’1’ SOF’1’-OU’1’PU’J’...
*-

-.

..
1 } I 1

3
-D
C&

0.1

0.01

0.001

0.0001

1e-05

1e-06

1e-07 t 1 1

0.5 1 1.5 2
E#NO [dB]

1

0.1

0.01

0.001

0.0001

1e-05

1e-06

1e-07

1e-08

(a) Interleaving size N~nt = 256

2.5 3

0 0.5
E@: [dB]

1.5 2

35

(b) Interleaving size N~~, = 1024

Fig. 20. Type 11 Self concatenation. Simulated bit-error probability versus signal-to-noise ratio for 1-5

iterations.

December 17, 1997 DF{AF’T

36
1,

-.

-.

E’1”1’ ‘1’}{ AN SAC’1’IONS ,VO1.. XX, NO. Y, MON’1’11 1999

R=l /2 64 states
a------------- ..-..m--.---- ~-----m- ------- ------- ---
I 8
t m m m 8

■

I
b

I

I

n
m
I

“ T ‘J- T ‘ T “ T “ T “ T “ ‘!8 8
1
I

I

I
I

F
m w w
I

m

I
I

------- ---90-- ------- ------- ------- ------- ------- --
I

RI =1/3 8 states R2=312 8 states

4- ‘---: Slso ~.4----- Slso “

Fig. 21. A 64 state convolutional encoder split into two 8 state encoder and its corresponding iterative

decoding network.

use decoding techniques that do not track all paths in the trellis, like M-algorithms [29],and

sequential algorithms [30] or ad-hoc algorithms [31].

As the last application of the general iterative decoding technique described in this paper, we

propose acompletely ~lewapproach todecode convolutional, or, more gellerally, trellis codes. To

describe it, let us consider, as an example, a rate 1/2 convolutional code with constraint length

6, whose encoder is shown in Fig, 21. Instead of decoding it using the Viterbi algorithm based on

its 64-state trellis, we partition the encoder into the concatenation of two simpler subencoders

with 8 states. The encoder can now be seen as the cascade of an 8-state, rate 1/3 “outer”

encoder with an 8-state, rate 3/2 “inner” encoder, and wc can applied to this concatenation

the iterative decoder shown in Figure 21 formed by the two S1S0 module relative to the two

cascaded encoders.

‘l’he performances of the iterative decoding algorithm, compared to those obtained with the

optimal Viterbi algorithm applied to the 64-state original code, are plotted in Fig. 22 for a

number of iterations ranging in the range 1-10.

VII. CONCLUSIONS

III this paper, we have introduced soft-input soft-output modules employed as building blocks

to construct and iteratively decode in a distributed fashion code networks, a new concept that

DRAFT [)ecember 17, 1997

HI+;NIJDE’11O, L)lVSAI,AR, MON’1ORS1, POLLARA: SOF’1-lNPU’1’ SOFJ’-OU’I’I’U’1 ’...
-s

-.
1 1 1 J 1 1

MAP —
,Z, -%-... -.u--- ,/ .:. Iterative (1-IO) ----X---

~ol

,0-2

,0-4

,0-5

i -----
b. x.. ‘i’-:-’-.x..~ -1

37

I 1 I 1 I 1 Y
o 1 2 5

~/N; [dB] 4
6

Fig. 22. Comparison of iterative decoding (1-10 iterations) and Viterbi MI, decoding of a 64-state

convolutional code.

includes, and generalizes, various forms of concatenated coding schemes. It has been shown

that each encoder module has a well defined counterpart in the decoder, whose structure can

be immediately derived by specularity from the encoder one. A variety of applications have

been shown, including “turbo codes” , serially concatenated codes with interlcavers and a new

technique to decode convolutional codes with large constraint lengths.

[1]

[2]

[3]

[4]

[5]

[6]

INFERENCES

Claude Berrou, Alain Glavieux, and Punya Thitimajshima, “Near Shannon Limit Error-Correcting Coding

and Decoding: Turbo-Codes”, in Proceedings of IC6’’99, Geneve, Switzerland, May 1993, pp. 1064-1070.

Sergio Benedetto, Darinsh Divsalar, Guido Montorsi, and I?abrizio Pollara, “Serial concatenation of interleaved

codes: Performance analysis, design and iterative decoding”, JPI, TDA Progress Report, vol. 42-126, Aug.

1996.

Sergio Benedetto, Ezio Biglieri, and Valentino Castellani, Digital Transmission Theory, Prentice-Hall, New

York, 1987.

K. Abend and B.D. Fritchman, “Statistical Detection for Communication Channels with Intersymbol Inter-

ference”, Proceedings of IEEE, vol. 58, no. 5, pp. 779-785, May 1970.

R.W. Chang and J.C. Rancock, “On receiver structures for channels having memory”, IEEE Transactions

on Information Theory, vol. 11’-12, pp. 463–468, Oct. 1966.

1,.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear Codes for Minimizing Symbol

Error Rate”, IEEE Transactions on Infortnation Theory, pp. 284-287, Mar, 1974.

Dcccmber 17, 1997 DRAFT

38
.P

.
[7]

.-

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

P. I.. McAdam, L. Welch, and C. Weber,

1S17’’72, Asilomar, California, Jan. 1972,

C.R. Hartmann and 1,.D. Rudolph, “An

lkansactions on Information Theory, vol

b~l”l’ ‘1’l{ANSACYJ’JONS ,VO1.. XX, NO. Y, MON’1’H 1999

“Map bit decoding of convolutional codes”, in Abstract of papers,

p. 91.

optimum symbol-by-symbol decoding rule for linear codes”, IEEE

IT-22, pp. 514-517, Sept. 1976.

Branka Vucetic and Yunxin Li, “A Survey of Soft-Output Algorithms”, in Proceedings of ISITA ‘9.4, Sydney,

Australia, Nov. 1994, pp. 863-867.

S.S, Pietrobon and A.S. 13arbulescu, “A simplification of the modified bahl algorithm for systematic convo-

lutional codes”, in Proceedings oj ISITA ’94, Sydney, Australia, Nov. 1994, pp. 1073--1077.

Patrick Robertson, Emmanuelle Villebrun, and Peter Hoeher, “A Comparison of Optimal and Sub-Optimal

MAP Decoding Algorithms Operating in the Log Domain”, in Proceedings oj ICC’95, Seattle, Washington,

June 1995, pp. 1009-1013.

Peter Jung, “Novel I,ow Complexity Decoder for Turbo Codes”, Electronic Letters, vol. 31, no. 2, pp. 86-87,

Jan. 1995.

Sergio 13enedetto, Darinsh Divsalar, Guido Montorsi, and Fabrizio Pollara, “Algorithn~ for continuous decod-

ing of turbo codes”, Electronics Letters, vol. 32, no. 4, pp. 314-315, Feb. 1996.

I,. Papke, “Improved decoding with the sova in a parallel concatenated (turbo-code) scheme”, in Proceedings

of ICC’96, Dallas, Texas, June 1996.

Sergio Benedetto, Dariush Divsalar, Guido Montorsi, and Fabrizio Pollara, “Soft-output decoding algorithms

for continuous decoding of parallel concatenated convolutional codes”, in Procccdings oj ICC’96, Dallas,

Texas, June 1996.

G.D. Forney Jr., Concatenated Codes, M. I. T., Cambridge, MA, 1966.

V.V. Ginzburg, “Multidin~ensional Signals for a Continuous channel”, Problems ojInjormation i’kansmiwion,

vol. 23, no. 4, pp. 20–34, Jan. 1984.

N. Seshadri and C-E.W. Sundberg, “Generalized Viterbi Algorithms for Error Detection with Convolutional

Codes”, in Proceedings o.f GLOIIECOM’89, Dallas, Texas, Nov. 1989, vol. 3, pp. 43.3.1–43.3.5.

Joachim Hagenauer and Peter Hoeher, “Concatenated Viterbi Decoding”, in Proceedings of Fourth Joint

Swedish-Soviet lnt. Workshop on lnjornaation Theory, Gotland, Sweden, Studenlitteratur, Lund, Aug. 1989,

pp. 29-33.

Joachim Hagenauer, Elke Offer, and Lutz Papke, “Iterative decoding of binary block and convolutional

codes”, IEEE Transactions on lnjormation Theor~, vol. 42, no, 2, pp. 429-445, Mar. 1996.

P. Hoeher, “Tcm on frequency-selective fading channels: a comparison of soft-output probabilistic equalizers”,

in Proceedings oj GLOBECOM’90, San Diego, California, Dec. 1990, pp. 401.4.1–401 .4.6.

Yunxin Li, 13ranka Vucetic, and Yoichi Sate, “Optimum Soft-Output Detection for Channels with Intersymbol

Interference”, IEEE Transactions on Information Theory, vol. 41, no. 3, pp. 704-713, May 1995.

Robert McEliece, Eugene Rodemich, and Jung-Fu Cheug, “1’he turbo decision algorithm”, in Proceedings oj

33rd Allerton Conference on Communication, Control and Computing, Monticello, Illinois, Aug. 1995.

Niclas Wiberg, Hans-Andrea I,oeliger, and Ralf Kotter, “Codes and iterative decoding on general graphs”,

European Transactions on Telecommunications, vol. 6, no. 5, pp. 513-526, Oct. 1995.

Sergio Benedetto, Dariush Divsalar, Guido Montorsi, and Fabrizio Pollara, “Soft-output decoding algorithms

in iterative decoding of turbo codes”, JPL TJ!)A Progress Report, vol. 42-124, pp. 63-87, Feb. 1996.

Sergio Benedetto, l)ariush Divsalar, Guido Montorsi, and Fabrizio Pollara, “Analysis, design and itera-

tive decoding of double serially concatenated codes with interleaves”, IEEE Journal on Selected Areas on

Communication, Feb. 1998.

DRAFT December 17, 1997

HI3NN1)E’11O, L)l VSALAR, MON’1’ORSl, l’01/LARA: SOF1’-1N1’U’1’ SOF’1’-0U’l’l’U’l’... 39
-F

-.
[27] Sergio Benedetto, Roberto GareIlo, and Guido Montorsi, “The trellis complexity oft urbo codes”, in I’roceed-

-. ings of GLOBECOM ’97’- Communications Theorg Miniconfwcnce, Phoenix, Arizona, Oct.]997.

[28] A.J. Viterbi and J.K. Omura, Principles oj Digital Communication and Coding, McGraw-Hill, New-York,

1979.

[29] John B. Anderson and %shadri Mohan, Source and Channel Coding, Kluwer Academic Publishers, Boston,

Dordrecht, I.ondon, 1991.

[30] George C. Clark and J. Bibb Cain, Error-Correction Coding jor Digital Communications, Plenum Press, New

York and London, 1981.

[3]] Sergio Benedetto and Guido Montorsi, “A new decoding algorithm for geometrically uniform codes: Descrip-

tion and performance”, IEEE Transactions on Communications, vol. 44, no. 5, pp. 581-590, May 1996.

December 17, 1997 DRAFT

40
*r

-. “

● *

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

B’11’ ‘1’RANSAU1’1ONS ,VO1.. XX, NO. Y, MON’1’11 1999

IJwr OF FIGURES

T’he trellis encoder”””””o.” . ..”. ”””5

Anedgeof the trellis section .,. ...7

The Soft-Input Soft-Output (S1S0) module . 7

A trellis-coded transmission system with the S1S0 module as a MAP decoder . . . 14

Themoduleso fac odenetwork.. 23

A transmission system systc%? employing mapper and soft-mapper. 24

The parallel concatenated convolutional coding scheme and its decoding network. . 25

The decoding network of the parallel concatenated coding scheme in a cascaded

implement ation O... .000”o”ooooo””.s 26

Simulation results for the coding scheme of Fig. 7 with and without the feedback to

the SOMAP ...”..”.””” ““”””” 27

The parallel concatenated convolutional coding scheme with IIPSK modulation and

its decoding network””” “s””so”o”..”28

The seria~ concatenated coding scheme using a symbol interleave and its decoding

network””””..””.”.” 29

The serial concatenated coding scheme using a bit interleaver and its decoding network. 30

Simulation results for the coding scheme of Fig. 12. El is a nonrecursive 4 state

encoder with rate RI = 1/2 and E2 is a recursive 4 state encoder with rate 122 = 2/3.

Theinterleaver length is Ni~~ =32,768 . 30

Co-decoder for hybrid concatenation. (Type I) . 31

Co-decoder for hybrid concatenation. (Type H) . 32

Hybrid concatenation (Type I). Simulated bit-error probability y versus signal-to-noise

ratio forl-5 iterations .”.”...”” 32

Type I Self concatenation. Coding and decoding structures. 33

Self concatenation. Simulated bit-error probability versus signal-to-noise ratio for

l-5 iterations .. O.. O. OO. OC 0“0$00””34

Type 11 Self concatenation. Coding and decoding structures. . , 34

Type II Self concatenation. Simulated bit-error probability versus signal-to-noise

ratio forl-5 iterations.O. O0”””35

A 64 state convolutional encoder split into two 8 state encoder and its corresponding

iterative decoding network. ...36

Comparison of iterative decoding (1-1 O iterations) and Vitcrbi MI, decoding of a

64-statec onvolutionalc ode..... 37

DRAFT December 17, 1997

BF,NE1)13’llW, l)lVSALAR, MON’lWRS1, lWIJLAttA: SOF1-lNPU’1’ SO}I’’I’-OI’I’U’ I’I’... 41

~,lST OF ~ABI, ES

1 I)elay and complexity of the soft-input soft-output modules 21

11 Implementation requirements for the S1S0 module relative to a k/n encoder using

the bit-level storage ...23

December 17, 1997 DRAFT

